Regularized Estimation of TEC from GPS Data (Reg-Est)

Prof. Dr. Feza Arikan
arikan@hacettepe.edu.tr
Outline

• Introduction
• Regularized Estimation Technique (Reg-Est)
• Preprocessing of GPS Data
• Computation of TEC
 – Determination of Reg-Est Parameters
 – Comparisons with IRI, JPL, CODE, ESA and UPC
• Conclusion
Introduction

- Total Electron Content (TEC) is defined as number of free electrons in a unit area along ray path.
- Using TEC values, short and long term variations in the ionosphere and ionospheric disturbances can be analyzed.
- Global Positioning System (GPS) satellites transmit two simultaneous PRN signals in L-band whose carrier frequencies are 1575.42 MHz and 1227.60 MHz, respectively.
- Earth based GPS receivers record these signals as Pseudo Range and Relative Phase.
- Global TEC values can be estimated using either the Pseudo Range or Relative Phase or a combination of these two recordings.
Introduction (cont.)

• The GPS constellation is constituted by a network of 24 satellites orbiting at 20,200 km with respect to the Earth surface. The satellites are evenly distributed within 6 orbital planes inclined 55° with respect to the Earth’s equator and equally spaced at 60°. Each satellite has a period of 12 hours.
In various studies in the literature, vertical TEC (VTEC) values are estimated assuming that:
- Ionosphere is distributed homogeneously around local zenith of the receiver
- Ionosphere is stable during at least 5 to 15 minutes
- The satellite which is closest to the local zenith is chosen.

Regularized VTEC Estimation technique (Reg-Est) incorporates all the available GPS signals recorded by the receiver for the 24 hours from all the satellites.

VTEC values, computed from a desired time period within 24 hour period and from all satellites, are combined using the Least Squares method and the estimation is performed using a two-step regularization method.
Introduction (cont.)

• When the regularized estimation results are compared with those from IRI-2000, JPL, CODE, UPC and ESA, best accordance is observed with JPL and CODE estimates.
• IRI computations usually provide a better fit for the night values.
• IRI estimates are highly dependent on Sunspot Number (SSN).
• Results from the Reg-Est are highly accurate in detecting disturbances and irregularities for various time scales and stations.
Regularized Estimation Technique (Reg-Est)

VTEC values for any desired period within 24 hours
Sat pos for 24 hours

Multipath avoidance

Optional Windows

Regularized VTEC algorithm
Includes receiver and satellite biases

Optional sliding window median filter

a) Rectangular Window

b) Gaussian Window

c) Scaling Window

REGULARIZED TEC
A set of measurements obtained from ith satellite:

$$x_i = [x_i(0) \ldots x_i(n) \ldots x_i(N - 1)]^T$$

$1 \leq i \leq M$ (total number of satellites); $0 \leq n \leq N - 1$ ($N = 2880$)

An optional weighting function w_i can also be defined as

$$w_i = [0 \ldots 0 \ w_i(1) \ldots w_i(N_{i,m}) \ 0 \ldots 0]^T$$

$N_{i,m}$ = the number of non-zero measurements from the ith satellite within the 24 hour period.
Reg-Est (cont.)

The cost function which includes L_2 norm between the estimated and computed VTEC values summed over all satellites plus a detrended high pass penalty filter multiplied by a regularization parameter μ:

$$
J_{\mu,k_c}(x) = \sum_{m=1}^{M} (x - x_m)^T W_m(x - x_m) + \mu(x - at)^T H(k_c)(x - at)
$$

where $W_m = \text{diag}(w_m)$, and $H(k_c)$ is the high pass penalty function. $H(k_c)$ is designed to pass all signals up to a cutoff frequency, k_c.

$(x - at) = \text{detrend operator}$
Reg-Est (cont.)

For a given parameter set μk_c and a, we investigate the values x which will minimize J. Thus, we search for x which will satisfy $\nabla_x J_{\mu,k_c}(x) = 0$ and $\partial J/\partial a = 0$.

$$A(\mu, k_c) \begin{bmatrix} x \\ a \end{bmatrix} = b$$

$$A(\mu, k_c) = \begin{bmatrix} \sum_{m=1}^{M} W_m + \mu H(k_c) & -\mu H(k_c)t \\ t^T H(k_c) & -t^T H(k_c)t \end{bmatrix}$$

$$b = \begin{bmatrix} \sum_{m=1}^{M} W_m x_m \\ 0 \end{bmatrix}$$
Reg-Est (cont.)

The estimate of x, \tilde{x}, is obtained by

$$\begin{bmatrix} \tilde{x}(\mu, k_c) \\ a \end{bmatrix} = A^{-1}(\mu, k_c)b$$

The high pass penalty filter is Toeplitz for a 24 hour period.

The success of the estimation depends on optimum choices of the estimation parameters, μ and k_c.

The optional sliding window median filter follows the data structure and further smooths irregularities due to processing. The sliding window median filter length, N_f.

Preprocessing of GPS Data

- Compute VTEC for desired time period (24 hours: 2880 samples)
- Obtain satellite positions and biases for 24 hours
- Interpolate satellite positions for every 30 second data
- Convert to local coordinates

\[
A = 40.3 \text{ m}^3/\text{s}^2; \quad f_1 = 1575.42 \text{ MHz}; \quad f_2 = 1227.60 \text{ MHz}
\]

\[
VTEC = \frac{\text{STEC}}{M(\epsilon)}
\]

\[
M(\epsilon) = \left[1 - \left(\frac{R \cos \epsilon}{R + h} \right)^2 \right]^{-1/2}
\]

\[\epsilon = \text{elevation angle}; \quad R = \text{effective earth radius}; \quad h = 428.8 \text{ km}\]
Computation of TEC

Stations:
For October, 2003 : 10-11 (Quiet), 27-31 (Disturbed)
• Zelenchukskaya, Russia (43.17°N, 41.33°E)
• Trabzon, Turkey (40.59°N, 39.46°E)
• Ankara, Turkey (39.53°N, 32.45°E)
• Istanbul, Turkey (41.06°N, 29.01°E)
• Gebze, Turkey (40.47°N, 29.27°E)
• Ohrid, Macedonia (41.07°N, 20.47°E)
• Sofia, Bulgaria (42.33°N, 23.23°E)
• Nicosia, Cyprus (35.08°N, 33.23°E)

For April, 2001 : 25 (Quiet), 23, 25 (Disturbed)
• Kiruna, Norway (67.32°N, 20.09°E)
• Kiev, Ukraine (50.22°N, 30.30°E)
• Ankara, Turkey (39.53°N, 32.45°E)
• M. Dragot, Israel (31.35°N, 35.23°E)
Determination of Estimation Parameters

- For optimum choice of μ and k_c, define an error function:

$$e(\mu, k_c) = \sum_{i=1}^{M} ||W_i(\tilde{x} - x_i)||^2$$

- Larger $\mu \rightarrow$ more regularization \Rightarrow smoother estimates BUT may not follow the desired features in the data!

- Smaller $\mu \rightarrow$ and Larger $k_c \rightarrow$ less regularization \Rightarrow jagged estimates BUT follows the local trends in the data!
Determination of Estimation Parameters

- Reduce the jagged estimates with undesired jumps using an optional sliding window median filter. For optimum length of median filter, N_f, define error function:

$$\text{med \ error}(N_f) = \| \tilde{x} - \tilde{x}_{N_f} \|^2$$
Computation of TEC (cont.)

D_{st} and K_p Variation During April 23 – 28, 2001 Period

![Graph showing D_{st} and K_p variation during April 23 – 28, 2001 Period]
Computation of TEC (cont.)

- April 23, 2001
 Negatively Disturbed
- April 25, 2001
 Quiet Day
- April 28, 2001
 Positively Disturbed

- Ionospheric Dispatch Center (IDCE)
 www.cbk.waw.pl/rwc/idce.html
Computation of TEC (cont.)

D_{st}, K_p and Sunspot Number Variation During October 2003
Computation of TEC (cont.)

- October 10, 11 2003
 Quiet Day
- October 27, 28, 29 2003
 Positively Disturbed
- October 30, 31 2003
 Negatively Disturbed

- Ionospheric Dispatch Center (IDCE)
 www.cbk.waw.pl/rwc/idce.html
Determination of Estimation Parameters

Best choice: $\mu = 0.1$ and $k_c = 8$
Determination of Estimation Parameters

Best choice: $\mu = 0.1$ and $k_c = 8$
Determination of Estimation Parameters

Best choice: $\mu = 0.1$ and $k_c = 8$
Determination of Estimation Parameters

Best choice: $\mu = 0.1$ and $k_c = 8$
Determination of Estimation Parameters

ANKARA, APRIL 25 2001
0900 UT - 1200 UT

$e_f(N_f)$, median filter length in samples
Determination of Estimation Parameters

- (a) ZeLEnCHUKSKAYA
 - Oct 28, 2003
 - 0000 UT - 2400 UT

- (b) ISTANBUL
 - Oct 29, 2003
 - 0000 UT - 2400 UT

- (c) ISTANBUL
 - Oct 31, 2003
 - 0000 UT - 2400 UT

- (d) TRABZON
 - Oct 31, 2003
 - 0000 UT - 2400 UT
Determination of Estimation Parameters

M. DRAGOT, APRIL 23, 2001

Median Filtered data with $N_f = 17$

Estimated VTEC
Comparisons with IRI, JPL, CODE, ESA and UPC

- **JPL-GNISD** provides global ionospheric maps generated on an hourly and daily basis at Jet Propulsion Laboratory (JPL) Pasadena, California, USA using data from up to 100 GPS sites of the IGS and other institutions (http://iono.jpl.nasa.gov)

- **CODE**, Center for Orbit Determination in Europe, University of Berne, Switzerland derives 12 2-hour sets of 149 ionosphere parameters per day from GPS data of IGS network. (http://www.aiub.unibe.ch/ionosphere.html)

- **ESA/ESOC** model contains 2-dimensional TEC maps from the European Space Operations Center (ESOC) of European Space Agency (ESA), Darmstadt, Germany (http://nng.esoc.esa.de/gps/ionmon.html)

- **gAGE/UPC** global ionospheric maps are generated by Polytechnical University of Catalonia, Barcelona, Spain (UPC) (http://maite152.upc.es/~ionex/gAGE_dip/gAGE_dip.html)

- **IRI – 2001** is obtained from (http://nssdc.gsfc.nasa.gov/space/model/models/iri.html)
Comparisons with IRI, JPL, CODE, ESA and UPC

Kiruna, April 28, 2001
Conclusion

- Reg-Est estimates VTEC with 30 s time resolution using all satellites in the vicinity of the receiver.
- Reg-Est is easy to implement and has no computational complexity. Reg-Est can estimate VTEC near real time with very high accuracy.
- Estimation parameters are very robust and same set can be used with any station (high or midlatitude) and with any ionospheric state (quiet or disturbed).
- Small scale time variations and disturbances can be observed very accurately.
- Regularized VTEC values are in accordance with other GIM-VTEC data and better agreement with JPL and CODE is observed.
- Consistent with IRI model.
IONOLAB-TEC

- Reg-Est is programmed in JAVA so that it can be accessed from internet without the need to download any program.
- IONOLAB-TEC is the Java version of Reg-Est.
- For details: